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Abstract
We investigate the persistent currents and magnetization of a mesoscopic
system consisting of two clean metallic rings sharing a single contact point
in a magnetic field. Many novel features with respect to the single-ring
geometry are underlined, including the explicit dependence of wavefunctions
on the Aharonov–Bohm fluxes, the complex pattern of two-fold and three-
fold degeneracies, the key role of length and flux commensurability, and in
the case of commensurate ring lengths the occurrence of idle levels which do
not carry any current. Spin–orbit interactions, induced by the electric fields
of charged wires threading the rings, give rise to a peculiar version of the
Aharonov–Casher effect where, unlike for a single ring, spin is not conserved.
Remarkably enough, this can only be realized when the Aharonov–Bohm fluxes
in both rings are neither integer nor half-integer multiples of the flux quantum.

PACS numbers: 03.65.−w, 73.23.Ra, 73.21.−b

1. Introduction

The orbital magnetic response of mesoscopic systems has been extensively studied in the
last 25 years [1]. One of its manifestations is the occurrence of persistent currents and
weak magnetism in small (sub-micron size) metallic rings threaded by a magnetic flux [2].
By ‘small’ one means that the circumference L of the ring is much smaller than the phase
coherence length Lφ , and so quantum coherence is maintained throughout. This condition can
be achieved at low enough temperatures. In a metallic ring disorder is very weak (as expressed
in terms of the Ioffe–Regel condition kF � � 1, with kF and � being the Fermi momentum and
the mean free path, respectively), and the currents persist for systems of a few microns in size
[3], while for kF � � 1 they decay exponentially with the system size. The magnetic response
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Figure 1. The sample considered in this work consists of two clean wires modeled as ideal rings
with lengths L1 and L2, areas A1 and A2, threaded by fluxes �1 and �2, touching at a contact
point P.

of metallic rings proved to be an important tool to study fundamental aspects of quantum
mechanics, such as quantum coherence [4] and the Aharonov–Bohm (AB) effect [5, 6]. In
systems exhibiting the AB effect, the magnetic flux appears as a pure Abelian U(1) gauge,
in the sense that it only affects the phase of the wavefunction. Every observable quantity is
therefore periodic in the magnetic flux (this is the Byers–Yang theorem [7]). Analogously, in
the presence of a strong electric field (either internal or external), spin–orbit interactions give
rise to the Aharonov–Casher (AC) effect [8, 9], which can be described as a pure non-Abelian
SU(2) gauge.

In this work, motivated by these issues, we examine the relevance of the topology of the
sample to its magnetic response. We investigate thoroughly a closed system composed of
two (ideal) metallic rings sharing a single contact point P (see figure 1). From a topological
viewpoint, this sample has genus two, whereas a single ring has genus one. This difference
turns out to enrich the physics in a rather non-trivial way, as already noticed in [10]. The
present work includes a systematic study of the energy spectrum, persistent currents and
magnetization of the sample shown in figure 1, including their dependence on the ring lengths,
on the magnetic fluxes and on the number N of electrons at zero temperature. The difference
between the single- and double-ring geometry is underlined throughout. The main novel
features of the latter case are as follows. Wavefunctions generically depend on the fluxes.
A rich pattern of two-fold and three-fold degeneracies is observed. As a consequence, the
question whether a given level has a paramagnetic or diamagnetic response is more subtle
than in the single-ring geometry. The commensurability of both ring lengths is a key issue.
In the case of commensurate ring lengths, a finite fraction of the levels are ‘idle’, in the
sense that their energies do not depend on the magnetic fluxes, so that these levels do not
contribute to the persistent currents. The case of incommensurate ring lengths requires a
special treatment, inspired from the theory of modulated incommensurate structures. As for
the AC effect, the two-ring geometry allows one to study a novel feature which is absent in
the single-ring geometry. Suppose that the AC effect is realized by threading a ring with a
long straight wire with constant longitudinal charge density. In a single-ring geometry this
construction implies that sz, the spin component along the ring axis, is conserved, and so the
problem decomposes into two independent ones, one for spin up and the other for spin down.
In the two-ring geometry, we can realize the AC effect as a pure gauge in an sz non-conserving
system. Remarkably enough, this is possible only if the magnetic fluxes through both rings
are non-trivial, i.e., neither integer nor half-integer multiples of the flux quantum. This kind
of interplay between the AB and AC effects had not been noticed so far, to the best of our
knowledge. Finally, the introduction of a non-Abelian SU(2) flux can also affect the sign of
the sample’s magnetization, turning a diamagnetic to a paramagnetic response or vice versa.

In the following, we elaborate and substantiate the issues presented above. Starting with
the AB effect, the following topics are successively covered (section numbers in parentheses):
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the Hamiltonian and its characteristic equation (2), basic observables, including persistent
currents and magnetization (3), various special cases of interest (4), two-fold and three-fold
degeneracies (5), and the spectrum and observables for commensurate (6) and incommensurate
(7) ring lengths. Then, in section 8, we examine the role of spin–orbit interactions and construct
a Hamiltonian in terms of SU(2) fluxes leading to the AC effect. The energy levels and the
magnetization are calculated in the special case of two equal rings, the emphasis being put on
a novel AB–AC interference effect. A summary of our findings and a discussion are presented
in section 9, while two appendices are devoted to a reminder of the well-known case of a
single ring (A), and to an extension of the analysis to three coupled rings (B).

2. The Hamiltonian and its characteristic equation

We consider a clean metallic sample in the form of two unequal rings touching at a contact
point P, as shown in figure 1. The rings are planar, but may otherwise assume arbitrary shapes.
The rings have lengths L1 and L2 and areas A1 and A2. In the presence of a uniform transverse
magnetic field B, they are therefore threaded by magnetic fluxes �1 = BA1 and �2 = BA2.
In the case of circular rings, to be used in numerical illustrations of our results, we have
A1 = L2

1

/
(4π) and A2 = L2

2

/
(4π). In order to compare both ring lengths, we introduce a

variable 0 < ω < 1 so that

L1

L1 + L2
= ω,

L2

L1 + L2
= 1 − ω. (2.1)

It will turn out that the system has different characteristics for commensurate lengths (rational
ω) and for incommensurate lengths (irrational ω).

To write down the Hamiltonian, it is useful to employ reduced units (h̄ = c = e = 2m =
1), so that the flux quantum reads �0 = 2π . The spectrum and the observables are therefore
2π -periodic in �1 and �2. We parametrize a point of the left ring by its curvilinear abscissa
0 � s1 � L1, starting from the contact point P and oriented clockwise, and similarly a point
of the right ring by 0 � s2 � L2. Furthermore, we neglect spin degrees of freedom (except in
section 8). The one-body Hamiltonian of the system reads

H = (p1 − a1)
2 + (p2 − a2)

2, (2.2)

with

p1 = −i
d

ds1
, p2 = −i

d

ds2
, (2.3)

whereas the tangential vector potentials a1 and a2 can be taken equal to

a1 = �1

L1
, a2 = �2

L2
. (2.4)

A state |ψ〉 is described by a pair of wavefunctions {ψ(1)(s1), ψ
(2)(s2)}. The first term of the

Hamiltonian H acts on the left component ψ(1)(s1), whereas the second term acts on the right
component ψ(2)(s2). The behavior of the wavefunctions at the contact point P is in general
described by a unitary junction S-matrix. In the present work we make the simplest choice,
which corresponds to just requiring the continuity of the wavefunction:

ψ(1)(0) = ψ(1)(L1) = ψ(2)(0) = ψ(2)(L2) = ψ(P), (2.5)

and the conservation of the current:

(p1 − a1)ψ
(1)(0) − (p1 − a1)ψ

(1)(L1) + (p2 − a2)ψ
(2)(0) − (p2 − a2)ψ

(2)(L2) = 0. (2.6)
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Setting E = q2 for the energy eigenvalue, we look for an eigenstate of H in the form

ψ(1)(s1) = eia1s1(A1 eiqs1 + B1 e−iqs1),

ψ(2)(s2) = eia2s2(A2 eiqs2 + B2 e−iqs2). (2.7)

Condition (2.5) allows one to express these four amplitudes in terms of ψ(P) as

A1 = e−i�1 − e−iqL1

2i sin qL1
ψ(P), B1 = eiqL1 − e−i�1

2i sin qL1
ψ(P),

(2.8)

A2 = e−i�2 − e−iqL2

2i sin qL2
ψ(P), B2 = eiqL2 − e−i�2

2i sin qL2
ψ(P).

Condition (2.6) then yields the characteristic equation

D(q) = 0, (2.9)

where the characteristic function reads

D(q) = sin q(L1 + L2) − cos �2 sin qL1 − cos �1 sin qL2. (2.10)

The eigenstates of the Hamiltonian correspond to the solutions qn � 0 of (2.9), labeled by
n = 1, 2, . . . and ordered as 0 � q1 � q2 � . . . . The corresponding energy eigenvalues
are En = q2

n . In the special case where each ring is threaded by a quarter flux unit
(�1 = �2 = π/2), we have qn = nπ/(L1 + L2) (see (4.10)). In the general case, i.e.,
for arbitrary values of the fluxes, we set

qn = nπ + gn

L1 + L2
(n = 1, 2, . . .). (2.11)

We will refer to gn as the modulation of the spectrum of eigenmomenta with respect to the
linear behavior (4.10). This quantity will be shown in section 7 to obey the bound

|gn| � π. (2.12)

The normalization of the wavefunction of the nth level reads

〈ψn|ψn〉 =
∫ L1

0

∣∣ψ(1)
n (s1)

∣∣2
ds1 +

∫ L2

0

∣∣ψ(2)
n (s2)

∣∣2
ds2 = |ψn(P)|2�(qn), (2.13)

where

�(qn) = L1
1 − cos �1 cos qnL1

sin2 qnL1
+ L2

1 − cos �2 cos qnL2

sin2 qnL2
, (2.14)

hence

ψn(P) = �(qn)
−1/2, (2.15)

up to an irrelevant phase factor.
It is worth underlining a key difference between the present situation and that of a single

ring, recalled in appendix A. The gauge transformation employed in (2.7), while it locally
eliminates the vector potential from the Schrödinger equation, does not lead to a Bloch-type
boundary condition, at variance with (A.2). As a consequence, and in contrast with the
single-ring wavefunction ψ(s), the functions ψ1(s) and ψ2(s) given in (2.7) are not periodic
in their respective arguments s1 and s2. The two-ring topology is indeed in marked difference
with the single-ring one. Waves propagating in each ring are scattered at each passage at the
contact point P. This multiple-scattering phenomenon destroys the periodicity of the plane
waves characteristic of the single-ring problem. As a consequence, stationary states, as given
by solutions of (2.9), bear in general a non-trivial dependence on both ring lengths L1, L2

and on both fluxes �1,�2. The periodicity of physical observables in the fluxes is however
guaranteed by the Byers–Yang theorem, whose validity is independent of whether there is a
Bloch analogue or not.
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3. Persistent currents and magnetization

The contributions of the nth level to the persistent currents in each ring and to the magnetization
read

I1,n = − ∂En

∂�1
, I2,n = − ∂En

∂�2
, Mn = −∂En

∂B
= A1I1,n + A2I2,n. (3.1)

The persistent currents can be evaluated as follows. Considering I1,n for definiteness, we have

I1,n = − 1

L1

∂En

∂a1
= 2

L1
〈ψn|p1 − a1|ψn〉

= 2

L1

∫ L1

0
ψ(1)


n (s1)

(
−i

d

ds1
− a1

)
ψ(1)

n (s1) ds1. (3.2)

Using expression (2.7) of the normalized wavefunction, together with (2.8), (2.14) and (2.15),
we obtain after some algebra

I1,n = 2qn

L1
Q1,n, I2,n = 2qn

L2
Q2,n, Mn = 2qn

(
A1Q1,n

L1
+

A2Q2,n

L2

)
, (3.3)

where the dimensionless current amplitudes read

Q1,n = − L1 sin �1

sin qnL1�(qn)
, Q2,n = − L2 sin �2

sin qnL2�(qn)
. (3.4)

An alternative approach consists in evaluating the currents from the spectrum. We have

I1,n = −2qn

∂qn

∂�1
= 2qn

(
∂D/∂�1

∂D/∂q

)
q=qn

= 2qn

sin �1 sin qnL2

(∂D/∂q)q=qn

. (3.5)

The current amplitudes can therefore be expressed as

Q1,n = −L1
∂qn

∂�1
= −ω

∂gn

∂�1
, Q2,n = −L2

∂qn

∂�2
= −(1 − ω)

∂gn

∂�2
. (3.6)

The following identity ensures that the results (3.3), (3.4) and (3.5), (3.6) are identical:(
∂D

∂q

)
q=qn

= −sin qnL1 sin qnL2�(qn). (3.7)

For a zero-temperature system with N electrons, the N lowest energy states are occupied.
The total energy and magnetization are therefore given by

E =
N∑

n=1

En, M = −∂E

∂B
=

N∑
n=1

Mn. (3.8)

Finally, explicit bounds on various quantities of interest can be derived by applying the
inequality |〈ψn|O|ψn〉|2 � 〈ψn|O2|ψn〉 to the operators O1 = p1 − a1 and O2 = p2 − a2.
Expression (3.2) implies that the persistent currents obey the bound

(L1I1,n)
2 + (L2I2,n)

2 � 4q2
n, (3.9)

i.e.,

Q2
1,n + Q2

2,n � 1. (3.10)

Furthermore, using (3.5) and (3.7), we can respectively recast (3.9) as

�(qn)
2 �

(
L1 sin �1

sin qnL1

)2

+

(
L2 sin �2

sin qnL2

)2

(3.11)

and (
∂D

∂q

)2

q=qn

� (L1 sin �1 sin qnL2)
2 + (L2 sin �2 sin qnL1)

2. (3.12)
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4. Special cases of interest

4.1. No magnetic fluxes

We consider first the problem in the absence of fluxes: �1 = �2 = 0 (mod. 2π).4 The
characteristic function (2.10) factors as

D(q) = −4 sin
q(L1 + L2)

2
sin

qL1

2
sin

qL2

2
. (4.1)

The spectrum therefore consists of the following three sectors, in correspondence with the
factors of the above expression.

• Bilateral states. These states correspond to sin q(L1 + L2)/2 = 0, hence

q = bπ

L1 + L2
(b = 0, 2, 4, . . .), (4.2)

with ‘b’ for bilateral. The corresponding wavefunctions are standing waves living on the
whole system:

ψ(1)(s1) = ψ(P)
cos qs1 + cos q(L1 − s1)

1 + cos qL1
,

(4.3)
ψ(2)(s2) = ψ(P)

cos qs2 + cos q(L2 − s2)

1 + cos qL1
.

• Left states. These states correspond to sin qL1/2 = 0, hence

q = lπ

L1
(l = 2, 4, 6, . . .), (4.4)

with ‘l’ for left. The corresponding wavefunctions are standing waves living on the left
ring, whose amplitude vanishes at the contact point5:

ψ(1)(s1) ∼ sin qs1, ψ(2)(s2) = 0. (4.5)

• Right states. These states correspond to sin qL2/2 = 0, hence

q = rπ

L2
(r = 2, 4, 6, . . .), (4.6)

with ‘r’ for right. The corresponding wavefunctions are standing waves living on the right
ring, whose amplitude vanishes at the contact point:

ψ(1)(s1) = 0, ψ(2)(s2) ∼ sin qs2. (4.7)

The ground-state energy, obtained by setting b = 0 in (4.2), vanishes6. The modulation
introduced in (2.11) reads g1 = −π , which saturates the bound (2.12). The corresponding
ground-state wavefunction is uniform: ψ(1)(s1) = ψ(2)(s2) = ψ(P).

For small fluxes, we have

E1 ≈ 1

L1 + L2

(
�2

1

L1
+

�2
2

L2

)
, (4.8)

4 We recall that the notation (mod. 2π) means up to a multiple of 2π .
5 The symbol ∼ is used whenever the wavefunction normalization is not given explicitly.
6 Note that l = 0 and r = 0 are not allowed in (4.4) and (4.6).
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Table 1. Characteristics of the system for the four cases with integer or half-integer fluxes:
factorized form of the characteristic function D(q); integers b, l and r entering the spectra (4.2),
(4.4) and (4.6), respectively corresponding to bilateral, left and right states.

�1 �2 D(q) b l r

0 0 −4 sin q(L1+L2)
2 sin qL1

2 sin qL2
2 0, 2, 4, . . . 2, 4, 6, . . . 2, 4, 6, . . .

0 π 4 cos q(L1+L2)
2 sin qL1

2 cos qL2
2 1, 3, 5, . . . 2, 4, 6, . . . 1, 3, 5, . . .

π 0 4 cos q(L1+L2)
2 cos qL1

2 sin qL2
2 1, 3, 5, . . . 1, 3, 5, . . . 2, 4, 6, . . .

π π 4 sin q(L1+L2)
2 cos qL1

2 cos qL2
2 2, 4, 6, . . . 1, 3, 5, . . . 1, 3, 5, . . .

so that the ground state is always diamagnetic. As far as excited states are concerned, the
results (4.2), (4.4) and (4.6) respectively become

q(L1 + L2) ≈ bπ +
�2

1 − �2
2

2
cot bπω,

qL1 ≈ lπ +
�2

1

2
cot

lπ

ω
, (4.9)

qL2 ≈ rπ +
�2

2

2
cot

rπ

1 − ω
.

These results show that there is no general rule to predict whether a given (left or right) state
is paramagnetic or diamagnetic. Bilateral states are always hybrid (one paramagnetic ring and
the other diamagnetic one).

The only degeneracies between the three interlaced spectra (4.2), (4.4) and (4.6) are
the three-fold ones taking place in the commensurate case at qa = θ = πν, where
ν = 2μ = 2, 4, 6, . . . is an even integer. With the notations of section 6, these momentum
values correspond to b = μm, l = μm1 and r = μm2. The quadratic terms in (4.9) diverge.
This is in agreement with the fact that near a degeneracy the energy eigenvalues vary linearly
with the fluxes, rather than quadratically (see section 5 for more details).

4.2. Integer or half-integer fluxes

Whenever each flux is either integer or half-integer (i.e., an integer or a half-integer multiple
of the flux quantum �0 = 2π ), the spectrum of the system still consists of the above three
types of states (bilateral, left and right). The corresponding momenta are still given by (4.2),
(4.4) and (4.6). Table 1 lists the characteristics of the spectrum in the four different cases,
corresponding to �1 = 0 or π (mod. 2π) and �2 = 0 or π (mod. 2π).

Left and right states are met in a more general setting. More precisely, left states with even
(resp. odd) l exist as soon as �1 = 0 (resp. �1 = π (mod. 2π)), irrespective of �2, whereas
right states with even (resp. odd) r exist as soon as �2 = 0 (resp. �2 = π (mod. 2π)),
irrespective of �1.

4.3. Quarter-integer fluxes

The situation where each ring is threaded by a quarter flux unit (�1 = �2 = π/2) is
also a special case of interest. In this case, the characteristic function boils down to
D(q) = sin q(L1 + L2). The momenta therefore have the linear dependence

qn = nπ

L1 + L2
(n = 1, 2, . . .). (4.10)

7
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In spite of the simplicity of the spectrum, the current amplitudes have the following
non-trivial expressions:

Q1,n = −ω sin nπω, Q2,n = (−1)n(1 − ω) sin nπω. (4.11)

These quantities obey |Q1,n| � ω, |Q2,n| � 1 − ω, and |Q1,n| + |Q2,n| � 1, the latter bound
being more stringent than the general one (3.10). The currents in both rings therefore have
the same sign (resp. opposite signs) whenever the level number n is odd (resp. even).

Using (3.6), the result (4.11) can be recast as follows. If the fluxes are close to a quarter
flux quantum, setting �1 = π/2 + δ�1,�2 = π/2 + δ�2, the modulation gn introduced in
(2.11) reads, to first order in δ�1 and δ�2,

gn ≈ sin nπω ×
{
δ�1 − δ�2 for n even,

δ�1 + δ�2 for n odd.
(4.12)

5. Degeneracies

A degeneracy manifests itself as a multiple (i.e., at least double) root of the characteristic
equation (2.9), i.e., as a simultaneous root of D(q) = 0 and ∂D/∂q = 0. The bound (3.12)
shows that the system has no accidental degeneracy. A degeneracy may indeed only take
place when both products sin �1 sin qL2 and sin �2 sin qL1 vanish simultaneously, i.e., when
at least one factor of each product vanishes. It can be checked that there are only two types of
degeneracies, to be successively investigated hereafter.

5.1. Two-fold degeneracies

Two-fold degeneracies occur when either sin qL1 = sin �1 = 0 (but sin qL2 �= 0) or
sin qL2 = sin �2 = 0 (but sin qL1 �= 0). These two instances will be respectively referred to
as left and right degeneracies, for a reason that will become clear in a while.

Consider the first instance for definiteness. This is a left degeneracy, as the state
to become two-fold degenerate is a left state, in the sense of section 4.1. We have
cos qL1 = cos �1 = (−1)l , with the notation (4.4), so that

∂D

∂q
= (−1)lL1(cos qL2 − cos �2). (5.1)

The conditions for a two-fold degeneracy are therefore

sin qL1 = sin �1 = 0, cos qL2 = cos �2. (5.2)

At the degeneracy the momentum is q = lπ/L1, whereas the fluxes read �1 = (2j + l)π

and �2 = (2k + εlL2/L1)π , where ε = ±1, whereas j and k are integers. For circular rings
(more generally, for rings with similar shapes), we have �2/�1 = A2/A1 = (L2/L1)

2 =
((1 − ω)/ω)2. This condition relates ω to ε, j and k as follows:

ε = +1 : 2(j − k + l)ω2 − (4j + 3l)ω + 2j + l = 0,
(5.3)

ε = −1 : 2(j − k)ω2 − (4j + l)ω + 2j + l = 0.

The system may therefore have two-fold degeneracies both in the commensurate case (ω
rational) and in the incommensurate case provided ω is a quadratic number, obeying an
equation of the form

Iω2 + Jω + K = 0, (5.4)

where I, J and K are integers.

8
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In order to explore the vicinity of the degeneracy, we set

q = lπ

L1
+ η, �1 = lπ + δ�1, �2 = lπL2

L1
+ δ�2. (5.5)

By expanding the characteristic equation (2.9) to second order in η, δ�1 and δ�2, we obtain
the reduced equation

L1(L1 + 2L2)η
2 − 2L1δ�2η − δ�2

1 = 0. (5.6)

The momenta of the two nearly degenerate states are therefore given by

η± = L1δ�2 ± W2

L1(L1 + 2L2)
, (5.7)

with the definition

W2 = (
L1(L1 + 2L2)δ�

2
1 + L2

1δ�
2
2

)1/2
. (5.8)

The momenta shifts η± vanish linearly with the distance to the degeneracy in the (δ�1, δ�2)

plane. The corresponding amplitudes of the persistent currents read

Q1,± = ∓L1δ�1

W2
, Q2,± = L2

L1 + 2L2

(
1 ± L1δ�2

W2

)
. (5.9)

These amplitudes therefore remain of order unity, and they depend on the direction in the
(δ�1, δ�2) plane along which the degeneracy point is approached. As this direction is varied,
the amplitudes describe an ellipse:

(1 − ω)2Q2
1 + ω(2 − ω)Q2

2 − 2ω(1 − ω)Q2 = 0. (5.10)

5.2. Three-fold degeneracies

We have noticed at the end of section 4.1 that the spectrum has three-fold degeneracies in the
absence of fluxes in the commensurate case at qa = θ = πν, where ν = 2μ = 2, 4, . . . is an
even integer, with the notations of section 6.

More generally, there are three-fold degeneracies at all the energies of the idle states,
given by (6.4), i.e., qa = θ = πν, with ν = 1, 2, . . . . Consider indeed one of these energies.
We have

∂D

∂q
= aε1ε2(m1(1 − ε2 cos �2) + m2(1 − ε1 cos �1)), (5.11)

with the notations (6.6). The conditions for a three-fold degeneracy are therefore

cos �1 = ε1, cos �2 = ε2. (5.12)

Right at the degeneracy, the fluxes therefore read �1 = πνm1 and �2 = πνm2 (mod. 2π).
The situation in the absence of fluxes is recovered when ν is even. If ν is odd, at least one of
the fluxes is a half integer, because at least one of the integers m1,m2 is odd.

In order to explore the vicinity of the degeneracy, we set

θ = νπ + η, �1 = πνm1 + δ�1, �2 = πνm2 + δ�2. (5.13)

By expanding the characteristic equation (2.9) to third order in η, and to second order in δ�1

and δ�2, we find three solutions: the idle state at η = 0, and two symmetrically shifted active
states at η± = ±W3, with

W3 =
(

m2δ�
2
1 + m1δ�

2
2

m1m2(m1 + m2)

)1/2

. (5.14)

9
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The momentum shift W3 again vanishes linearly with the distance to the degeneracy in the
(δ�1, δ�2) plane. The corresponding amplitudes of the persistent currents read

Q1,± = ∓ δ�1

(m1 + m2)W3
, Q2,± = ∓ δ�2

(m1 + m2)W3
. (5.15)

Here again, these amplitudes remain of order unity and depend on the direction in the
(δ�1, δ�2) plane along which the degeneracy point is approached. As this direction is
varied, the amplitudes describe an ellipse:

(1 − ω)Q2
1 + ωQ2

2 − ω(1 − ω) = 0. (5.16)

6. Commensurate ring lengths

We now turn to the situation where the ring lengths L1 and L2 are commensurate. One
of the peculiar features of this situation is the existence of three-fold degeneracies, already
investigated in section 5.2.

In the commensurate situation, both ring lengths are multiples of the same fundamental
length a:

L1 = m1a, L2 = m2a, (6.1)

where the integers m1 � 1 and m2 � 1 are relatively prime. Setting m = m1 + m2 � 2, the
variable ω takes the rational value ω = m1/m. For circular commensurate rings, the fluxes
read �1 = m2

1Ba2/(4π),�2 = m2
2Ba2/(4π), so that the magnetization is periodic in the

magnetic field B, with period B0 = 8π2/a2.

6.1. Spectrum

Introducing the reduced momentum

θ = qa, (6.2)

the characteristic function becomes

D(θ) = sin mθ − cos �2 sin m1θ − cos �1 sin m2θ. (6.3)

The spectrum of the system is 2π -periodic in θ . It consists of two types of states.

• Idle states. They correspond to the trivial solutions of the characteristic equation:

θ = πν (ν = 1, 2, . . .). (6.4)

These states carry no current, as their energy is independent of the fluxes. The
corresponding wavefunctions do however depend on the fluxes. We have indeed

ψ(1)(s1) ∼ ( e−i�2/2 − ε2 ei�2/2) eia1s1 sin qs1,
(6.5)

ψ(2)(s2) ∼ (ε1 ei�1/2 − e−i�1/2) eia2s2 sin qs2,

with

ε1 = eiqL1 = (−1)νm1 , ε2 = eiqL2 = (−1)νm2 . (6.6)

Idle states become three-fold degenerate for integer or half-integer values of the fluxes
such that condition (5.12) is fulfilled.

10
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Table 2. The first 2m states of the system in the commensurate case, corresponding to the first
period of the spectrum in the variable θ = qa. For each column, corresponding to a state, the table
gives the level number n, the angle θ , the type of state (‘I’ for idle or ‘A’ for active), the modulation
and the current amplitudes.

n 1 . . . m − 1 m m + 1 . . . 2m − 1 2m

θ θ(1) . . . θ(m−1) π 2π − θ(m−1) . . . 2π − θ(1) 2π

Type A . . . A I A . . . A I
gn g1 . . . gm−1 0 −gm−1 . . . −g1 0
Q1,n Q1,1 . . . Q1,m−1 0 −Q1,m−1 . . . −Q1,1 0
Q2,n Q2,1 . . . Q2,m−1 0 −Q2,m−1 . . . −Q2,1 0

• Active states. These states, corresponding to the other solutions of the characteristic
equation D(θ) = 0, carry non-zero persistent currents in general.
Setting c = cos θ , we have the identity sin mθ = sin θUm−1(c), where Un(c) is the nth
Tchebyshev polynomial of the second kind, whose degree is n. Focusing onto active
states, the characteristic equation therefore reads

Um−1(c) − cos �2Um1−1(c) − cos �1Um2−1(c) = 0. (6.7)

This equation has m − 1 solutions c(k) (k = 1, . . . , m − 1). We write these solutions as
c(k) = cos θ(k), with 0 � θ(k) � π , ordered as

0 � θ(1) � · · · � θ(m−1) � π. (6.8)

Three-fold degeneracies correspond to the limiting situations θ(1) = 0 or θ(m−1) = π ,
whereas two-fold ones can take place anywhere along the sequence of θ(k)’s.

To sum up, in each period of the spectrum of length 2π in the variable θ = qa, there are
2(m − 1) active levels and two idle ones, i.e., a total of 2m states. The modulation and the
current amplitudes associated with the states at θ = θ(k) (k = 1, . . . , m − 1) read

gk = mθ(k) − kπ, Q1,k = −m1
∂θ(k)

∂�1
, Q2,k = −m2

∂θ(k)

∂�2
, (6.9)

whereas those associated with the states at θ = 2π − θ(i),

g2m−k = kπ − mθ(k), Q1,2m−k = m1
∂θ(k)

∂�1
, Q2,2m−k = m2

∂θ(k)

∂�2
, (6.10)

are the opposites of the first expressions. The bound (2.12) implies

(k − 1)π � mθ(k) � (k + 1)π (k = 1, . . . , m − 1). (6.11)

Modulation and current amplitudes then repeat themselves periodically, with period 2m. The
main characteristics of the states in the first period are listed in table 2.

6.2. Rings with equal lengths

The case where both rings have equal lengths is the simplest of all the commensurate situations.
We have m1 = m2 = 1,m = 2, ω = 1/2 and a = L = L1 = L2. The characteristic
equation (6.7) has a single solution:

c(1) = cos θ(1) = cos �1 + cos �2

2
. (6.12)

11



J. Phys. A: Math. Theor. 42 (2009) 175301 Y Avishai and J M Luck

Table 3. Expression of the magnetization M of a system with N electrons at zero temperature, as
a function of the flux � in the range 0 � � � π , for two equal circular rings and for a single
circular ring.

N (mod. 4) M (two equal rings) M (one single ring)

0 N(π − �)/(4π) N(π − �)/(2π)

1 −(N + 1)�/(4π) −N�/(2π)

2 −N�/(4π) N(π − �)/(2π)

3 (N + 1)(π − �)/(4π) −N�/(2π)

Idle states (n = 2p) and active states (n = 2p − 1) alternate along the spectrum:

q2p = pπ

L
, q2p−1 = (2p − 1)π + (−1)p−1g1

2L
. (6.13)

The modulation and the current amplitudes of the lowest active state (n = 2p − 1 = 1, i.e.,
p = 1) read

g1 = 2θ(1) − π, Q1,1 = − sin �1

2 sin θ(1)

, Q2,1 = − sin �2

2 sin θ(1)

. (6.14)

In the case of two equal circular rings, the above predictions can be made fully explicit.
We have �1 = �2 = � = BL2/(4π). Symmetry considerations allow us to restrict ourselves
to 0 � � � π , so that θ(1) = �, g1 = 2� − π and Q1,1 = Q2,1 = −1/2. Hence, using (3.3),
the contribution of any odd state (n = 2p − 1) to the magnetization reads

M2p−1 = (−1)p
2p − 1

4
+

π − 2�

4π
. (6.15)

Inserting this formula into (3.8), we obtain the expression of the magnetization of a system
with N electrons at zero temperature. This expression, given in table 3, depends on N (mod. 4).
The corresponding result for a single circular ring, given by (A.6) and (A.7), is also listed in
the table for comparison (the latter depends on the sign of N, i.e., on N (mod. 2)).

6.3. Magnetization

The simple linear dependence of the magnetization on the magnetic field in the range
0 � � � π , observed in table 3, is a peculiarity of the cases considered there, namely
one single circular ring or two equal ones.

In all the other cases of commensurate circular rings, the curve M(B) is non-trivial.
This is illustrated in figure 2, showing plots of the magnetization over one period, against
�1/(2π) = B/B0 = BL2

1

/
(8π2), for L2 = L1 (left) and L2 = 2L1 (right). The latter

example (m1 = 1,m2 = 2,m = 3) is generic of the commensurate case, except that the
characteristic equation (6.7) is of degree 2 in c and can therefore be solved analytically. We
thus obtain

c(1) = cos θ(1) = 1
4

(
cos �1 + (4 + 4 cos �2 + cos2 �1)

1/2
)
,

(6.16)
c(2) = cos θ(2) = 1

4

(
cos �1 − (4 + 4 cos �2 + cos2 �1)

1/2) .

The currents and the magnetization then follow from (6.9), (6.10) and (3.3), (3.8).

12
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Figure 2. Plots of the magnetization M over one period, against �1/(2π) = BL2
1/(8π2), for

commensurate circular rings with L2 = L1 (left) and L2 = 2L1 (right), for N = 3 (empty circles),
N = 4 (full circles) and N = 5 (full triangles). Data for N = 3 and N = 4 coincide on the left
plot, as n = 4 is an idle state.

7. Incommensurate ring lengths

We now turn to the situation where the ring lengths L1 and L2 are incommensurate, i.e., the
variable ω is irrational.

The key quantity is again the modulation gn of the spectrum. In the commensurate case,
i.e., for a rational ω = m1/m, gn has been shown to be periodic in n, with period 2m. In the
present incommensurate case, gn is expected to never repeat itself exactly. At a quantitative
level, the structure of gn is revealed by the situation where �1 = �2 = π/2, considered in
section 4.3. The result (4.12) suggests the Ansatz

n even : gn = Ge(nπω),
(7.1)

n odd : gn = Go(nπω),

where Ge (‘e’ for even) and Go (‘o’ for odd) are 2π -periodic functions of x = nπω. The
modulation is therefore a quasiperiodic function of the level number n. We will refer to Ge and
Go as the hull functions, following the term introduced by Aubry in the context of modulated
incommensurate structures [11]. The current amplitudes are then also quasiperiodic functions
of n:

n even : Q1,n = −ω
∂Ge(nπω)

∂�1
, Q2,n = −(1 − ω)

∂Ge(nπω)

∂�2
,

(7.2)
n odd : Q1,n = −ω

∂Go(nπω)

∂�1
, Q2,n = −(1 − ω)

∂Go(nπω)

∂�2
.

Inserting (7.1) into the characteristic equation (2.9) leads to implicit equations for the hull
functions:

sin Ge = cos �2 sin(x + ωGe) − cos �1 sin(x − (1 − ω)Ge),
(7.3)

sin Go = − cos �2 sin(x + ωGo) − cos �1 sin(x − (1 − ω)Go).

These equations imply the following properties: Ge(x) and Go(x) are 2π -periodic, odd
and continuous functions of x; Ge(x) = 0 for cos �1 = cos �2, whereas Go(x) = 0 for
cos �1 = −cos �2; changing cos �2 into its opposite amounts to exchanging Ge and Go,
whereas changing cos �1 and cos �2 into their opposites amounts to changing x into x + π .

13
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7.1. Integer or half-integer fluxes

It is worth investigating first the case where there are no magnetic fluxes, and more generally
the situation where the fluxes are integer or half-integer. The spectrum in the absence of
magnetic fluxes has been studied in section 4.1.

• Even values n = 2p of the level number correspond to bilateral states. Expression (4.2)
shows that the modulation vanishes whenever n = b = 2p is an even integer. We have
therefore Ge = 0.

• Odd values n = 2p − 1 of the level number correspond to left and right states. For left
states, setting l = 2l, (4.4) yields 2(p − 1)π < (2p − 1)π + g2p−1 = 2lπ/ω < 2pπ ,
hence7

p = 1 + Int
l

ω
, g2p−1 = 2π

(
Frac

l

ω
− 1

2

)
. (7.4)

Similarly, for right states, setting r = 2r , (4.6) yields 2(p − 1)π < (2p − 1)π + g2p−1 =
2rπ/(1 − ω) < 2pπ , hence

p = 1 + Int
r

1 − ω
, g2p−1 = 2π

(
Frac

r

1 − ω
− 1

2

)
. (7.5)

Expressions (7.4) and (7.5) cover every integer p once. The inverse formulae read

Frac pω < ω : l = Int pω, g2p−1 = π − 2π Frac pω

ω
,

(7.6)
Frac pω > ω : r = p − 1 − Int pω, g2p−1 = π − 2π(1 − Frac pω)

1 − ω
.

The latter expressions for the modulation can be brought to the form (7.1) with Go(x) = G(x),
the periodic, odd, piecewise linear continuous function defined for 0 � x � 2π as

G(x) =
⎧⎨
⎩

−x/ω for 0 � x � πω,

(x − π)/(1 − ω) for πω � x � π(2 − ω),

(2π − x)/ω for (2 − ω)π � x � 2π.

(7.7)

The linearly increasing (resp. decreasing) parts of G(x) describe right (resp. left) states. The
cusps at x = πω and x = π(2 − ω) eventually correspond to three-fold degeneracies.

More generally, for the four situations corresponding either to integer or half-integer
fluxes, considered in section 4.2, the non-zero hull functions are either equal to G(x)

or to G(x + π), as shown in table 4. Figure 3 shows a plot of these two functions
in the prototypical example of an incommensurate situation, namely L2/L1 = τ , where
τ = (1+

√
5)/2 ≈ 1.618 034 is the Golden mean, so that ω = 1/τ 2 = (3−√

5)/2 ≈ 0.381 966.

7.2. The general case

Coming back to the general case, i.e., arbitrary values of the fluxes, we are now in a position
to show another remarkable property: the hull functions are bounded by their limiting values
for integer or half-integer fluxes:

0 � x � π : G(x) � Ge(x),Go(x) � G(x + π),

π � x � 2π : G(x + π) � Ge(x),Go(x) � G(x).
(7.8)

7 We recall that the integer part Int x and the fractional part Frac x of a real number x are defined by x = Int x+Frac x,
with Int x integer and 0 � Frac x < 1, so that Frac x is periodic in x, with unit period.
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Figure 3. Plot of the hull functions G(x) (full line) and G(x + π) (dashed line), divided by π ,
against x/(2π) over one period, for ω = 1/τ 2.

Table 4. Expression of the hull functions Ge(x) and Go(x), respectively characterizing the states
with even and odd n, for the four cases with integer or half-integer fluxes. The function G(x) is
defined in (7.7).

�1 �2 Ge(x) Go(x)

0 0 0 G(x)

0 π G(x) 0
π 0 G(x + π) 0
π π 0 G(x + π)

In other words, the hull functions are inscribed in the two parallelograms shown in figure 3.
This property implies in particular |Ge(x)| � π and |Go(x)| � π , hence the bound (2.12).

Inequalities (7.8) can be proved as follows. It can be checked, using their
expressions (7.2), that the current amplitudes Q1,n and Q2,n have well-defined signs:

sign(I1,n) = sign(Q1,n) = − sign(sin �1) sign(sin nπω),
(7.9)

sign(I2,n) = sign(Q2,n) = − sign(sin �2) sign(sin nπ(1 − ω))︸ ︷︷ ︸
(−1)n−1 sign(sin nπω)

,

as long as both sin �1 and sin �2 are non-zero, so that degeneracies are avoided. These signs
are constant over the domain 0 < �1 < π, 0 < �2 < π . In particular, the observation
made in section 4.3, that the currents in both rings have the same sign (resp. opposite signs)
whenever the level number n is odd (resp. even), holds all over this domain. The hull functions
therefore have a monotonic dependence on �1 and �2 in the same domain, and they take their
extremal values at the corners of the domain, i.e., for integer or half-integer fluxes. Figure 4
shows plots of the hull function Go for ω = 1/τ 2, both for �1 = �2 (left) and for �1 = 0
and variable �2 (right).

If one flux is integer or half-integer, albeit the other is not, the hull functions Ge(x) or
Go(x) exhibit linear parts, where they coincide either with G(x) or with G(x +π). These linear
parts describe left or right states. They end at cusps which eventually correspond to two-fold
degeneracies. Consider for definiteness �1 = 0 and 0 < �2 < π . The hull functions start
linearly as

n even : Ge(x) = −x/ω for 0 � x � xe = ω�2,
(7.10)

n odd : Go(x) = −x/ω for 0 � x � xo = ω(π − �2).
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Figure 4. Plots of the hull function Go(x), divided by π , against x/(2π) over one period, for
ω = 1/τ 2. Left panel: �1 = �2 = kπ/10. Right panel: �1 = 0,�2 = kπ/10. The latter case
exhibits the linear parts (7.10). In both cases, k = 0, . . . , 10, bottom to top in the left part of the
curves.

Figure 5. Plots of the current amplitudes Q1,n (full symbols) and Q2,n (empty symbols) against
level number n, for �1 = BL2

1/(4π) = π/3. Left: commensurate case L2 = 2L1, i.e., ω = 1/3.
Right: incommensurate case ω = 1/τ 2.

Let us close this section with some numerical illustrations of our results in the case of
circular rings. The observables (persistent currents and magnetization) are given in terms of
the hull functions by (7.2), and (3.3), (3.8). Figure 5 shows plots of the current amplitudes
Q1,n and Q2,n of individual levels against level number n, for a system of two circular rings
with �1 = BL2

1

/
(4π) = π/3, in a typical commensurate case (left): L2 = 2L1, i.e., ω = 1/3

and in a typical incommensurate case (right): ω = 1/τ 2. The period 2m = 6 predicted
in section 6 is clearly observed in the commensurate case. Figure 6 shows plots of the
magnetization against �1/(2π) = BL2

1

/
(8π2), for N = 3 (left) and N = 10 (right), for two

incommensurate cases corresponding to the nearby irrationals ω = 1/τ 2 ≈ 0.381 966 and
ω = 1/ e ≈ 0.367 879. Two-fold degeneracies are observed in the first case, in agreement
with (5.4), as ω = 1/τ 2 obeys ω2 − 3ω + 1 = 0.

8. The role of spin–orbit interaction

So far spin did not play any role in our discussion. We now investigate the case where, in
addition to the Abelian U(1) magnetic fluxes �1 and �2, there are also non-Abelian SU(2)
fluxes �1 and �2.
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Figure 6. Plots of the magnetization M against �1/(2π) = BL2
1/(8π2), for N = 3 (left) and

N = 10 (right). Full lines: ω = 1/τ 2 (jumps due to two-fold degeneracies are shown by symbols).
Dashed lines: ω = 1/e.

For the sake of consistency, let us recall some basic notions pertaining to the physics
of SU (2) fluxes. Such fluxes arise as a result of the spin–orbit interaction. Unlike U(1)

fluxes, SU (2) fluxes are invariant under time reversal. While the U(1) flux leading to the
Aharonov–Bohm effect is realized by threading a ring with a magnetic field, the SU (2) flux
leading to the Aharonov–Casher effect is generated by piercing a ring with a line of charge.
More precisely, if a system of electrons is confined to a plane and subject to an electric field
generated by a straight perpendicular charged wire with constant charge λ per unit length, we
have the SU (2) analogue of the Aharonov–Bohm effect. The starting point of the analysis
is the Pauli Hamiltonian. In the presence of a vector potential A and of an electric field E,
within the approximate U(1) ⊗ SU(2) symmetry of the non-relativistic Schrödinger equation
[12], this Hamiltonian reads, in dimensionful form,

HPauli = 1

2m

(
p +

e

c
A + γ h̄E × σ

)2
, (8.1)

where γ = e/(4mc2). The third term on the right-hand side of (8.1) is responsible for the spin–
orbit interaction. In the case of a circular ring of radius R pierced by a charged wire through
its center, we have E = 2λr/R2, whereas the curvilinear abscissa and the circumference
read s = Rθ and L = 2πR, respectively. In this geometry, the U(1) and SU (2) potentials
appearing in (8.1) can be eliminated locally by the respective gauge transformations

gU(1) = exp

(
− ie

h̄c

∫ s

0
A · dr

)
= exp

(
− i�θ

2π

)
,

(8.2)

gSU(2) = exp

(
−iγ

∫ s

0
(E × σ) · dr

)
= exp

(
− i�n̂ · σθ

2π

)
,

where the integrations are carried out along the ring. In the above expression for gSU(2), the
integral need not be path-ordered. We have indeed (E × σ) · dr = −(E × dr) · σ =
−(2λ/R2)(r × dr) · σ = −2λn̂ · σdθ , where n̂ is the (properly oriented) unit vector
perpendicular to the plane of the ring. As a result, the dimensionless SU (2) flux reads
� = −4πγλ. The above simplifying property is specific of the case where the electric field
lies in the plane in which the electrons are confined. It has also been used in a spherical
geometry, in deriving a tight-binding version of the L · S spin–orbit interaction [13]. The
SU (2) flux appears as a ‘pure gauge’, in the sense that it only affects the phase of the
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β

P

Φ1 , λ1

Φ2 , λ2

Figure 7. Gedankenexperiment realization of the two rings with U(1) and SU(2) fluxes such that
spin is not conserved. Solid lines represent magnetic fluxes �1 and �2 as well as charged wires
with respective longitudinal charge densities λ1 and λ2. Full arrows mark the direction of the
electric fields, whereas empty arrows indicate the directions of the spins (more precisely, n̂1,2).
This is the special case corresponding to the Hamiltonian (8.4) where the two axes n̂1,2 lie in the
same (x, z) plane.

wavefunction. However, the U(1) and SU (2) potentials cannot be eliminated globally. These
potentials rather give rise to non-integrable phase factors, ei� for U(1) and ei�n̂·σ for SU (2).
Observables are therefore 2π -periodic both in � and in �. The upshot of the above discussion
is that, in the ring geometry, the Pauli Hamiltonian can be replaced by a simpler one, namely

H = (p − a − bn̂ · σ)2 , (8.3)

with the notations p = −id/ds, a = �/L and b = �/L. For a single ring in the (x, y) plane,
we have n̂ = ẑ, so that sz is conserved. The problem then reduces to that of two independent
Aharonov–Bohm systems of polarized electrons, one with flux � + � and the second with
flux � − �.

A somewhat less simple manifestation of the AC effect in terms of SU (2) fluxes occurs
when sz is not conserved. This can be realized (for example) by considering two rings
in different planes respectively subject to perpendicular magnetic fields and pierced by
perpendicular lines of charges with uniform densities λ1 and λ2. Such a Gedankenexperiment
is schematically displayed in figure 7. Thus, while in the U(1) two-ring problem the geometric
configuration of the two rings (in particular their relative orientation) did not play an important
role, the sample’s geometry becomes of central importance when SU (2) fluxes are considered.
This situation allows one to study the influence of SU (2) fluxes on the U(1) magnetization
[14]. The main messages of the analysis given below are as follows. (i) Even when n̂1 is
antiparallel to n̂2, the non-conservation of sz requires both U(1) fluxes to be non-trivial, i.e.,
neither integer nor half-integer. This is a novel situation where the energy levels are sensitive to
a combination of AB and AC effects. (ii) Even though � enters as a pure gauge, the spin–orbit
interaction might change the sign of the magnetization, so that the system switches between a
paramagnetic and a diamagnetic response. (iii) In complete analogy with the U(1) case, where
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the orbital magnetization is related to the derivative of the ground-state energy with respect to
�, it is natural to define an ‘SU (2) magnetization’ related to the derivative of the ground-state
energy with respect to �. This magnetization is another equilibrium property. In each ring
and for a given level n, it is proportional to the expectation value of the commutator {v̂, n̂ ·σ},
where v̂ is the velocity operator. Thus, it can in principle be measured, despite the fact that
the SU (2) (spin) current is not conserved while the U(1) (charge) current is conserved.

The one-electron Hamiltonian of our two-ring system now reads

H = (p1 − a1 − b1n̂1 · σ)2 + (p2 − a2 − b2n̂2 · σ)2, (8.4)

where p1 and p2 are the differential operators of (2.3), n̂1 and n̂2 are two arbitrary unit vectors,
σ is the vector of Pauli matrices, whereas the U(1) vector potentials a1 and a2 and their SU (2)
analogues b1 and b2 are related to the corresponding fluxes as follows:

a1 = �1

L1
, a2 = �2

L2
, b1 = �1

L1
, b2 = �2

L2
. (8.5)

The problem mostly depends on the angle β between both directions n̂1 and n̂2 in spin space,
such that n̂1 · n̂2 = cos β. For convenience we choose axes such that n̂1 = (0, 0, 1) is along
the z-axis whereas n̂2 = (sin β, 0, cos β) is in the (x, z)-plane.

A state |ψ〉 is described by a pair of wavefunctions {ψ(1)(s1), ψ(2)(s2)}, each of them
being a two-component spinor. Separating spin and orbital degrees of freedom, we are led to
look for an eigenstate of H in the form

ψ(1)(s1) =
(

1
0

)
ei(a1+b1)s1(A1 eiqs1 + B1 e−iqs1) +

(
0
1

)
ei(a1−b1)s1(C1 eiqs1 + D1 e−iqs1),

ψ(2)(s2) =
(

cos β

2

sin β

2

)
ei(a2+b2)s2(A2 eiqs2 + B2 e−iqs2) +

(− sin β

2

cos β

2

)
ei(a2−b2)s2(C2 eiqs2 + D2 e−iqs2).

(8.6)

Along the lines of section 2, the continuity conditions generalizing (2.5) allow one to express
the eight amplitudes A1, . . . , D2 in terms of the two components of ψ(P). The current
conservation conditions generalizing (2.6) then yield the characteristic equation DSO(q) = 0,
with

DSO(q) = (sin q(L1 + L2) − cos(�2 + �2) sin qL1 − cos(�1 + �1) sin qL2)

× (sin q(L1 + L2) − cos(�2 − �2) sin qL1 − cos(�1 − �1) sin qL2)

+ 4 sin qL1 sin qL2 sin �1 sin �2 sin �1 sin �2 sin2 β

2
. (8.7)

The first two lines of this expression are identical to the scalar characteristic
equation (2.10), up to the replacement of the magnetic fluxes by the sums and differences
of their Abelian and non-Abelian parts: �1 → �1 ± �1,�2 → �2 ± �2. Each factor
therefore describes a scalar problem in an effective Abelian flux. The third line provides the
coupling between both spin components. In order for this coupling to be non-zero, the four
fluxes need to be simultaneously non-trivial, i.e., not equal to 0 or π (mod. 2π), and the angle
β not equal to 0 (mod. 2π).

In the case of two equal rings (L1 = L2 = L,�1 = �2 = �,�1 = �2 = �),
the spectrum consists of an alternation of groups of two degenerate idle states, such that
sin qL = 0, i.e., qL = pπ , and of groups of two non-degenerate active states, such that

cos qL = cos θ± = cos � cos � ± sin � sin � cos
β

2
. (8.8)
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Figure 8. Plots of the magnetization M of two electrons on two equal rings, against �/π , for
� = π/2 (left) and � = π/5 (right). In both cases, β = kπ/10, with k = 0, . . . , 10, bottom to
top in the left part of the curves.

Choosing for definiteness 0 � β � π , we have 0 � θ+ � θ− � π . For N = 2 electrons, only
the first two active states are occupied. The magnetization reads

M = − 1

2π

(
θ+

∂θ+

∂�
+ θ−

∂θ−
∂�

)
. (8.9)

Let us consider the dependence of M on the Abelian flux � in the range 0 � � � π and
for 0 � � � π . For β = 0, we obtain

M =
{

−�/π for 0 � � < π − �,

(π − �)/π for π − � < � � π.
(8.10)

This discontinuous jump in the magnetization is rounded for non-zero values of β, as shown
in figure 8. This figure also illustrates a remarkable feature of such a simple system of two
electrons on two equal rings, namely that the magnetization changes sign as a function of
parameters. For a small magnetic flux �, we have

M = − 1

π

(
cos2 β

2
+ sin2 β

2
� cot �

)
� + · · · . (8.11)

The expression in the parentheses vanishes for

tan2 β

2
= − tan �

�
, (8.12)

provided � > π/2. More generally, the magnetization vanishes along a �-dependent curve
in the (�, β) plane, shown in figure 9. At fixed �, the magnetization is positive above and to
the right of that curve, whereas it is negative below and to the left of that curve.

9. Discussion

The many differences between the single- and the double-ring geometry, which have been
underlined throughout this work, testify the importance of topology in mesoscopic physics.
From a local viewpoint, both systems are governed by the same one-dimensional Schrödinger
equation. They only differ in their global topological structure, measured by their genus
(number of holes).
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Figure 9. Plot of the locus in the (�, β) plane where the magnetization M of two electrons on two
equal rings vanishes, at fixed �. From top right to bottom left, �/π = 0.1, 0.2, 0.3, 0.4, 0.45,
0.49, 0.5 (vertical line), 0.51, 0.55, 0.6, 0.7, 0.8 and 0.9.

Another example underlining the key role of topology in the context of persistent
currents has been studied by a collaboration involving one of us [15]. The importance of
the sample’s topology in mesoscopic physics has already been stressed by Schmeltzer [10],
who studied the persistent current of spinless fermions in a double-ring system, using the
formalism of Dirac constraints. In fact, Schmeltzer’s work was the main motivation for the
present research. Apart from underlining the importance of topology, the work [10] however
focussed on different aspects. In particular, the role of spin and the AC effect were not
tackled.

We have not tackled the rich physics that should emerge when interaction effects are taken
into account. First of all, there are interesting charging effects, suggested and discussed for
the single-ring geometry in [16, 17]. Second, interactions in one dimension turn the system
to a non-Fermi liquid. While this problem has been studied for a single ring [18], persistent
currents in interacting quantum rings have recently been studied in [19]. It can however be
anticipated that the detailed analysis presented here for the non-interacting system will turn
its place to a complicated and somewhat intractable formalism, so that e.g. the fine effects of
length and flux commensurability will be absent.

The two-ring geometry provides a playground for testing fundamental aspects of quantum
mechanics, such as the occurrence of interlaced AB and AC effects. At the same time, a
two-ring system is certainly within the reach of fabrication (see figure 1 in [20]), so that
the present study is also rooted into the real world. At the same time, the difficulties
of controlling the external electric field in semiconductor heterostructures hosting a two-
dimensional electron gas, as well as their enhancement by internal fields of ion cores and
discontinuities (eventually manifest as spin-orbit couplings) have recently been summarized
in a comprehensive review article [21]. Thus, while the bare Hamiltonian (8.4) of course
applies for any field whatsoever, a realization of the two-ring geometry as in figure 7 is still to
be considered as a Gedankenexperiment. Nevertheless, the main conclusion of our analysis
is fundamental and should pass any experimental test, namely, an AC effect which is a pure
gauge (periodic in the SU (2) phase) and does not conserve sz is realizable only if the AB
effect is present.

Finally, although the present work has focussed onto zero-temperature equilibrium
properties, it can be expected that transport properties will reveal a similar richness of
behavior.
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Appendix A. One single ring: a reminder

In this appendix, we give a brief reminder of the well-known situation of a single clean ring.
The ring with length L and area A is threaded by a flux � = BA. It may assume an arbitrary
planar shape. With the same conventions as in the body of this work, parametrizing a point of
the wire by its curvilinear abscissa s in the range 0 � s � L, the one-body Hamiltonian reads

H = (p − a)2, (A.1)

with p = −id/ds and a = �/L.
It is worth mentioning the analogy with Bloch theory, already noticed in [2]. Starting

from the Schrödinger equation Hψ = Eψ with ψ(s + L) = ψ(s), a gauge transformation
ψ(s) = eiasη(s) leads to the following equation and boundary condition for η(s):

p2η(s) = Eη(s), η(s + L) = ei�η(s). (A.2)

This is exactly the equation for an electron in a one-dimensional lattice potential of period
L and Bloch wavenumber K such that KL = �, i.e., K = a = �/L. One immediate
consequence is that the energy is periodic in � with period 2π . These results also hold when
the ring is not clean, since the full (disordered) potential can still be viewed as a periodic
potential of period L.

The eigenstates of H are given by the wavefunctions

ψ(s) ∼ ei(q+a)s . (A.3)

The periodicity of ψ(s) in s with period L yields the quantization condition (q + a)L = 2πk,
hence

qk = 2πk − �

L
, (A.4)

where k = 0,±1, . . . The wavefunctions ψk(s) ∼ exp(2π iks) therefore do not depend on the
magnetic flux �.

The contributions Ik and Mk of the eigenstate number k to the persistent current and the
magnetization read

Ik = −∂Ek

∂�
= 2qk

L
, Mk = −∂Ek

∂B
= AIk. (A.5)

With the notation (3.3), the above result for Ik simply reads Qk = 1.
For a zero-temperature system with N electrons, and for 0 � � � π , we have the

following results.

• For N = 2p − 1 odd, the occupied states are k = −p + 1, . . . , p − 1. We obtain

E = E0 +
N

L2
�2, M = −2A

L2
N�. (A.6)
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Figure B1. The sample considered in appendix B is made of three unequal rings touching at two
contact points P and Q.

• For N = 2p even, the occupied states are k = −p + 1, . . . , p. We obtain

E = E0 +
N

L2
(π − �)2, M = 2A

L2
N(π − �). (A.7)

In both cases the minimum energy reads E0 = N(N2 − 1)π2/(3L). For a circular ring
with radius R, we have L = 2πR and A = πR2, so that 2A/L2 = 1/(2π).

Appendix B. Three coupled rings

In this appendix, we show how the present investigation can be extended to more complex
geometries. We consider for definiteness the case of a sample made of three unequal rings
touching at two contact points P and Q, as shown in figure B1. The line PQ is assumed to be
an axis of symmetry of the sample. The left, middle and right rings have respective lengths
L1, L2 and L3 and areas A1, A2 and A3. They are therefore threaded by magnetic fluxes
�1 = BA1,�2 = BA2 and �3 = BA3.

The one-electron Hamiltonian of the system reads

H = (p1 − a1)
2 + (p2 − a2)

2 + (p3 − a3)
2, (B.1)

with p1 = −id/ds1, p2 = −id/ds2, p3 = −id/ds3, a1 = �1/L1, a2 = �2/L2, a3 = �3/L3.
A state is now described by three wavefunctions, one living on each ring:

{ψ(1)(s1), ψ
(2)(s2), ψ

(3)(s3)}. These wavefunctions obey two continuity conditions of the
form (2.5) (one at P and the other at Q) and two current conservation conditions of the form
(2.6). Along the lines of section 2, we obtain the characteristic function

D3(q) = cos q(L1 + L2 + L3)

− cos �3 cos q(L1 + L2) − cos �1 cos q(L2 + L3)

+ cos �3 cos qL1 + cos �1 cos �3 cos qL2 + cos �1 cos qL3

+ cos �2 sin qL1 sin qL3 − cos qL1 cos qL3 − cos �1 cos �3. (B.2)

Many of the outcomes of this paper can be extended to the present situation, although
expressions become very cumbersome. The energy eigenvalues En = q2

n can be parametrized
as

qn = nπ + gn

L1 + L2 + L3
(n = 1, 2, . . .), (B.3)

where the modulation gn obeys the bounds −π � gn � 2π . In the absence of magnetic fluxes,
the factorized form (4.1) of the characteristic function generalizes to

D3(q) = 8 sin
q(L1 + L2 + L3)

2
sin

qL1

2
sin

qL2

2
sin

qL3

2
. (B.4)

The spectrum consists of four sectors. The corresponding states can be respectively referred
to as trilateral, left, central and right.
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